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The one-dimensional paracrystal model is generalized by folding the lattice sites

with objects whose scattering lengths or sizes and separation display a spatial

correlation from cell to cell. A general theory to calculate the diffuse scattering

and the scattering-length autocorrelation function is developed. The investi-

gated models of coupling along the paracrystalline chain are the correlations

between (i) the sizes of the scatterers, (ii) the sizes of scatterers and their

separations, and (iii) the sizes of scatterers and the ¯uctuation of their

separation distances. In the ®rst case (i), the size of a scatterer is, on average,

linked to that of its neighbors. As a result, a continuous transition from the total

lack of size correlation (known as decoupling approximation or DA) to the

scattering from monodisperse domains (local monodisperse approximation or

LMA) is obtained. In the second case of correlation (ii), the mean interobject

distance is assumed to depend on the respective sizes of nearest neighbors.

Depending on the introduced correlation parameter, aggregation or hard-core-

type effects can be accounted for. Surprisingly, in some cases, it is possible to ®nd

a peak in the scattering curve without any structure in the total interference

function. The size±separation correlations may also dramatically reduce the

scattering intensity close to the origin compared to the completely uncorrelated

case. The last model (iii) foresees a coupling between the sizes of neighboring

objects and the variance of the separation between neighbors. Within this model,

on average along the chain, the ¯uctuations of distances between scatterers

become dependent on the respective sizes of neighbors, while the mean distance

between objects remains constant.

1. Introduction

Useful insights into the statistical properties of matter can be

gained by carefully interpreting X-ray or neutron scattering

patterns. For disordered systems, the analysis of the so-called

diffuse scattering (Ziman, 1979; Welberry, 1985) requires the

development of an appropriate model of disorder and a

method for calculating the resulting scattering. However, the

number of statistical parameters needed to characterize the

disorder dramatically increases with the complexity of the

studied system. In this context, simple analytical models of

scattering can give an overview of the main phenomena. Using

the theory of scattering from disordered crystalline systems,

the aim of this work is to introduce, at the nodes of the well

known Hosemann paracrystal model (Hosemann & Bagchi,

1962), scatterers whose scattering lengths display speci®c

correlations from cell to cell. Our aim is to shed light on the

speci®c signatures of such correlations in the scattered

intensity.

In the general theory of scattering by matter, disordered or

poorly crystalline systems (Guinier, 1956; Warren, 1969) can

conveniently be described in terms of substitution disorder and

lattice disorder. Substitution disorder consists of variations of

the scatterers located at each lattice site, for instance different

atomic species, molecule orientations, sizes of clusters etc.

Lattice disorder involves variations of the site position away

from that of a perfectly regular lattice; it can be divided into

two kinds. The ®rst kind corresponds to uncorrelated disorder

and involves uncorrelated displacements of the lattice sites,

thus keeping the long-range order and the sharpness of the

Bragg peaks as long as an average periodic regular lattice can

be de®ned. A well known example is the ®rst-order Debye±

Waller treatment of thermal vibrations, which reduces the

diffraction peak intensities without any broadening, and

homogeneously increases the diffuse background. The second

kind of lattice disorder involves correlation between the

displacements from site to site. Up to now, to describe it, two

simple models, the perturbed lattice (Welberry et al., 1980;



Welberry, 1985; Millane & Eads, 2000) and the paracrystal

(Hosemann & Bagchi, 1962), have been developed. These

models are well de®ned in one dimension (Mu, 1998; Millane

& Eads, 2000) but their extensions to two or three dimensions

are dif®cult (Welberry, 1985; Matsuoka et al., 1987, 1990;

Stroud & Millane, 1996; Busson & Doucet, 2000; Eads &

Millane, 2000, 2001) and lead to unwanted properties like

intense scattering at very small angles for the ideal paracrystal

(Hosemann, 1951). This problem is circumvented either by

analyzing the diffraction pattern in only one dimension of the

reciprocal space or by arguing that the disorder in the system

is fundamentally one-dimensional, like in layered structures.

In the perturbed lattice, the displacements of the lattice nodes

away from those of the perfect crystal are coupled from cell to

cell through a joint normal probability. The main advantage is

that the displacements are bounded; the scattering pattern is

characterized by a peak broadening with scattering angle

(Millane & Eads, 2000). The concept of the paracrystal was

introduced for the ®rst time by Hosemann in the early 50s

(Hosemann, 1951) and extensively developed until the

publication of a book (Hosemann & Bagchi, 1962). Its

construction in one dimension relies on an intuitive growth

process. Starting from an origin point, a paracrystalline chain

is built in a sequential way by adding each site relative to its

predecessor from the knowledge of the statistical distribution

of distances between the lattice sites. The diffraction pattern

resulting from this cumulative disorder is calculated taking

advantage of the convolution products, the paracrystal being

fundamentally de®ned through the statistics of the vectors

joining lattice sites. The paracrystal has been widely used to

analyze numerous types of scattering data ranging from

polymer materials (Vignaud et al., 1997) or disordered alloys

to particle systems (Hosemann & Hindeleh, 1995; Metzger et

al., 1998). However, in the ®eld of scattering from disordered

or poorly crystallized material, distinguishing between sub-

stitution and lattice disorder is arbitrary since some degree of

substitution at lattice sites can induce large lattice disorder.

An intuitive case is that of a growth process, which involves

hard-core repulsion between different species: the larger the

species the farther away from its neighbors. The present

theoretical work was indeed motivated by experimental

results of grazing-incidence small-angle X-ray scattering

(GISAXS) from growing disordered islands on surfaces

(Renaud et al., 2003; Revenant et al., 2004). During the growth

and coalescence processes, it seems that the Voronoi poly-

hedron associated with each particle scales with the radius

of the central island, leading to a peculiar signature in the

scattered signal below the correlation peak. Another

example of coupling would be a layered structure with an

alternate stacking of layers with different scattering factors

and ¯uctuating thicknesses. In the ®eld of surface science,

an equivalent problem is encountered with scattering from

terraces on vicinal surfaces (Croset & de Beauvais, 1997,

1998). In these examples, the resulting paracrystalline

characteristics of the lattice-site positions are intimately

linked to the sizes of the species that occupy the lattice

nodes. This `size±separation-distance coupling', as it will be

called in the following, leads to speci®c features in the

scattering pattern.

The interplay between substitution disorder and lattice

disorder of the second kind has been clearly developed in

many standard books on X-ray or neutron scattering (Guinier,

1956; Warren, 1969). However, the treatment is quite formal

and practical examples or analytical models are still missing to

characterize such a coupling. The aim of this work is to

combine these two types of disorders within the framework of

the paracrystal theory, thus taking into account the correlation

between the scattering weights of the contents of the

elementary cell and the lattice-site positions. The model is

restricted to one dimension to allow for an analytical treat-

ment. Although real systems are three-dimensional, scattering

from disordered materials can often be recorded along a

peculiar direction of reciprocal space and the diffraction

pattern can thus be analyzed in terms of a one-dimensional

model. Most of the time, this approximation is suf®ciently

accurate if not exact in some cases like re¯ectivity from layer

stacking. As regards the small-angle scattering on particle

systems, the data analysis often relies on simple assumptions,

such as a direct interpretation of the position of the ®rst

intensity maximum, called the `correlation peak', as being

inversely proportional to the average nearest-neighbor

distance or, when no correlation peak is present, as a simple

relationship between the average particle size and the low

wavevector transfer limit (Guinier gyration radius). This work

shows that, when correlations between neighbors are present,

these simple interpretations are no longer valid and an in-

depth investigation of all the scattering curve has to be done,

with sometimes no clear distinction between coherent scat-

tering, i.e. the `correlation peak', and diffuse scattering.

This article is written as follows. The general theory to

calculate the diffuse scattering from the autocorrelation

function accounting for any type of correlations is presented in

x2. Apart from the obvious uncorrelated chain described in

x3.3, three cases of correlations between the scatterers along

the chain are considered: correlations between (i) sizes (x3.4),

(ii) sizes and separation distance (x3.5), (iii) sizes and ¯uc-

tuation of separation distance (x3.6); `sizes' is a generic term

for the scattering length of the unit-cell content. To proceed in

the calculation of the scattering, correlations are restricted to

®rst neighbors and the content of each cell is an object with

either a Dirac shape or a stick shape whose scattering weight

¯uctuates from cell to cell. In each case (i), (ii), (iii), the effects

of the introduced correlations on the scattering curve and on

the autocorrelation function are detailed; peculiar attention is

paid to the behavior of the maximum of intensity (the so-

called `correlation peak' in disordered systems) and to the

Guinier region at small wavevector transfer. x3.4 details the

effects of a correlation between the sizes of the neighboring

particles, the paracrystalline lattice disorder being unaffected.

This means that the size of a particle is linked, on average, to

that of its neighbors through the correlation coef®cient �
(j�j< 1) of a normal law. The resulting coupling between

neighbors separated by nÿ 2 other objects decreases as j�jn.

This model yields a continuous transition between the
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complete lack of correlation known in the literature as the

decoupling approximation (DA, � � 0) and the scattering

from monodisperse domains, known as the local monodisperse

approximation (LMA, � � 1); DA and LMA are the two main

approximations used to analyze small-angle scattering from

particles (Pedersen et al., 1997; Pedersen, 1997; Lazzari, 2002;

Revenant et al., 2004). As the coupling parameter 0<�< 1

increases, the Bragg peak strengthens and the diffuse

intensity in between decreases. The case ÿ1<�< 0 corre-

sponding to an alternation of objects with small and large

scattering weights leads to a pseudo-doubling of the peri-

odicity. In the next sections, a nearest-neighbor correlation

is introduced between the sizes of the scatterers and the two

characteristic parameters of the paracrystal: the separation

between sites and the ¯uctuations (more precisely the

variance) of the distance between objects. In other words,

during the build-up of the autocorrelation function of the

paracrystalline chain, the statistical choice of the position of

an object becomes dependent on the sizes of its neighbors.

The coupling between size and separation distance, chosen

linear, is an effective way to mimic attractive or repulsive

interactions between large or small particles (depending on

the value of the introduced correlation parameter �). The

®rst intensity peak is found to shift towards the origin with

the coupling parameter j�j, with a maximum position which

is thus no longer simply related to the nearest-neighbor

separation distance D. Indeed, variation of � corresponds to

a continuous transition between correlated objects with a

clear peak in the interference function to uncorrelated

objects with a ¯at interference function. The last coupling

between the neighbor sizes and the variance of their

separation distance (x3.6) induces a slight shift and a

broadening of the correlation peak associated with a

continuous increase of intensity close to the origin.

2. Scattering from one-dimensional paracrystals with
correlations between scatterers: general theory

2.1. Autocorrelation function and diffuse scattering

Let us consider, along the x axis, an in®nite one-dimensional

chain of objects An, labeled by an index n from an arbitrary

origin, whose scattering lengths or shape factors F�x;Rn�
depend on a continuous parameter Rn. Typically, Rn can be the

size of the scattering entity. However, this does not exclude

the more general cases of genuine substitution disorders

between different species or ¯uctuations of scattering lengths.

Rn is assumed to be statistically distributed according to a

probability density p�Rn�. The autocorrelation function z�x� of

the chain scattering length is calculated stepwise from (i) the

statistical distribution P�dn=�R0; . . . ;Rn�� of the distance dn

between Anÿ1 and An (dn being algebraic) and in particular its

dependence on the nature of the previous scatterers in the

chain �R0; . . . ;Rn� and (ii) the joint probability p�R0; . . . ;Rn�
of having a sequence �R0; . . . ;Rn�. This joint probability is

linked to the conditional probability p�Rn=�R0; . . . ;Rnÿ1�� of

having Rn knowing the �R0; . . . ;Rnÿ1� sequence occurrence

through

p�R0; . . . ;Rn� � p�R0�p�R1=R0� . . . p�Rn=�R0; . . . ;Rnÿ1��: �1�

To build a representation of the chain, an object A0 of size R0

chosen with a probability p�R0� is ®rst selected to be at the

origin. Then, after R1 has been chosen with a probability

p�R1=R0�, the ®rst neighbor A1 of A0 has a probability

P�d=�R0;R1�� to be at a distance d from A0. The probability of

putting the third object A2 at a distance d from A0 is equal to

the product of the probability of having a distance d0 between

A0 and A1 {knowing the sizes of A0 and A1, i.e. P�d0=�R0;R1��}
by that of having a distance dÿ d0 between A1 and A2

{knowing the sizes of A0, A1 and A2, i.e.

P�dÿ d0=�R0;R1;R2��} integrated over all the possible

distances d0. This probability is nothing else than the convo-

lution product of the previously mentioned probabilities.

Hence, the scattering-length autocorrelation function per

object for x> 0, z��x�, is built step by step, by folding the

A0;An �n � 1; . . . ;�1� form factors with the above distance

probabilities and by integrating the obtained convolution

products over the size distributions:

z��x� �
R

p�R0�fF�ÿy;R0� 
 F�y;R0� 
 ��y�g�x� dR0

� RR p�R0;R1�fF�ÿy;R0� 
 F�y;R1�

 P�y=�R0;R1��g�x� dR0 dR1 �

RRR
p�R0;R1;R2�

� fF�ÿy;R0� 
 F�y;R2� 
 P�y=�R0;R1��

 P�y=�R0;R1;R2��g�x� dR0 dR1 dR2 � . . . �2�


 points out the convolution product in space. The total

autocorrelation function z�x� is given by

z�x� � z0 � z��x� � zÿ�x�; �3�

where zÿ�x� � z��ÿx� takes into account the contribution of

objects located on the negative x axis; z0 is the term linked to

the autocorrelation function of the mean scattering length.

The scattered intensity per object is then obtained by Fourier

transform of equation (3):

I�q� � z0��q� � Z��q� � Zÿ�q�; �4�

where q is the reciprocal-space coordinate. Obviously,

Zÿ�q� � Z���q� where the asterisk � indicates the complex

conjugate. By introducing the object form factor F�q;Rn�, i.e.

the Fourier transform of the object scattering length:

F�q;Rn� �
R�1
ÿ1
F�x;Rn� exp�iqx� dx �5�

and the Fourier transform of each internode distance statistic:

P�q=�R0; . . . ;Rn�� �
R�1
ÿ1
P�d=�R0; . . . ;Rn�� exp�iqd� dd; �6�

we ®nd that the total scattered intensity reads
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I�q� � z0��q� �
R

p�R0�jF�R0; q�j2 dR0

� RR p�R0;R1�F��q;R0�F�q;R1�P�q=�R0;R1�� dR0 dR1

� RRR p�R0;R1;R2�F��q;R0�F�q;R2�P�q=�R0;R1��
� P�q=�R0;R1;R2�� dR0 dR1 dR2 � . . .� c:c:; �7�

where c:c: stands for the complex conjugate, which allows the

cancelation of the imaginary part of the previous expression.

The mean scattering length of the scatterers leads to the

central peak z0��q�. If the chain has a ®nite size, the above

expression has to be folded by the crystal shape form factor,

i.e. the Fourier transform of its shape, which induces a

broadening of the q � 0 Dirac peak. This ®rst term is dropped

in the following as the only structural information in z�x� is

contained in the oscillating part around z0. All the effects of

correlations in the scattering pattern are included in the joint

probabilities p�R0; . . . ;Rn� (size±size coupling) and the

P�q=�R0; . . . ;Rn�� (size±separation coupling) terms.

2.2. Total and partial interference functions

Statistical information on the distribution of nodes is readily

available within this model. Indeed, replacing by a Dirac peak

the object shape F�x;R� and by one the form factor F�x;R�
and z0 in equations (2)±(3) and (7), respectively, yields the

node±node pair correlation function g�x� and its Fourier

transform, the total interference function S�q�. g�x� is the

reduced probability density of ®nding two objects separated

by a distance x, irrespective of their sizes. For an in-depth

study, the reduced node±node partial pair correlation func-

tions g`m�x� can be obtained. They give the probability of

®nding an object of size Rm at a distance x from a central

particle of size R`. In this article, the Faber±Ziman de®nition

(Waseda, 1980) of the partial interference function S`m�q�,
which is the Fourier transform of g`m�x�, is used:

I�q� � z0��q� ��0�q� �
RR

p�R`�p�Rm�F��q;R`�F�q;Rm�
� S`m�q� dR` dRm �8�

�0�q� � hjF�q;R�j2i ÿ jhF�q;R�ij2 �9�
S`m�q� � 1� �S

R �g`m�x� ÿ 1� exp�ÿiqx� dx: �10�
The brackets h. . .i denote the mean value over the size

distribution and �S is the linear density of objects. A

comparison with equation (7) leads to:

S`m�q� � 1� 1

p�R`�p�Rm�
�

p�R`;Rm�P�q=�R`;Rm��

�
Z

p�R`;R;Rm�P�q=�R`;R��P�q=�R`;R;Rm�� dR

�
ZZ

p�R`;R;R0;Rm�P�q=�R`;R��P�q=�R`;R;R0��

� P�q=�R`;R;R0;Rm�� dR dR0 � . . .� c:c:

�
�11�

As S`m�q� '
q!�1

1 [see for instance equation (64)], it appears

that I�q� 'q!�1 hjF�q;R�j2i. Hence, the high-q range of the

diffuse scattering is only driven by the mean object form factor

because of the loss of spatial long-range order induced by the

underlying paracrystal.

3. Correlation effects on scattering from one-
dimensional paracrystal chains

To go further, speci®c forms of the scattering length F�x;R�
have to be chosen. Also, speci®c analytic correlation models

are introduced in either the joint probability p�R0; . . . ;Rn� or

in the P�q=�R0; . . . ;Rn�� terms of equation (7). This allows us

to evaluate the multiple integrals involved in equation (7) and,

in some cases, to carry out their summation.

3.1. Scattering lengths or object shapes

Two simple and natural one-dimensional object shapes are

considered.

(i) The point function or Dirac peak:

F�x;R� � 2R�0��x�
F�q;R� � 2R�0:

�12�

(ii) The stick:

F�x;R� � �0 if jxj � R

0 if jxj> R

�
F�q;R� � 2R�0�sin�qR�=qR�;

�13�

where �0 is the constant density of scattering length.

These two shapes could, for instance, describe either the

neutron scattering length of a nucleus or the one-dimensional

shape of the electron cloud in X-ray scattering. They lead,

respectively, to a constant value or a 1=q2 dependence of the

scattered intensity in reciprocal space.

3.2. Distributions of scattering lengths and of distances

For the sake of simplicity, the scattering lengths or object

sizes are assumed to follow a Gaussian probability law with

the two ®rst centered moments R and �2
R:

p�R� � 1

�R�2��1=2
exp ÿ �Rÿ R�2

2�2
R

� �
: �14�

For the Dirac-shape case, this leads to

hjF�q;R�j2i � 4�2
0�R2 � �2

R�; jhF�q;R�ij2 � 4�2
0R2; �15�

and for the stick case:

hjF�q;R�j2i � 2�2
0

q2
�1ÿ exp�ÿ2�2

Rq2� cos�2qR�� �16�

jhF�q;R�ij2 � 4�2
0

q2
sin2�qR� exp�ÿq2�2

R�: �17�

The P�dn=�R0; . . . ;Rn�� probability is chosen such that its

®rst moment, i.e. the average separation between neighboring

objects, is constant and equal to D:R
. . .
R

dnP�dn=�R0; . . . ;Rn�� dR0 . . . dRn ddn � D: �18�
Its intrinsic second moment, i.e. without any correlations, is

called �D. Thus, the linear object density is constant: �S � 1=D

and z0 � 4�S�
2
0R2.

In all the following simulations, the same numerical par-

ameters will be used to highlight the main characteristic

features of correlations on scattering:
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�0 � 1; R � 5; �R � 0:4R � 2; D � 3:4R � 17;

�D � 0:1D � 1:7: �19�
The paracrystal statistics will be chosen as Gaussian and the

I0 � 4�2
0R2 value will often be used for normalization.

3.3. One-dimensional paracrystal without correlation: the
decoupling approximation

If there is no correlation between neighboring objects:

(i) the joint probability of sizes is simply the product of the

probabilities of having the sizes R0; . . . ;Rn:

p�R0; . . . ;Rn� � p�R0� . . . p�Rn�; �20�
(ii) the statistical distribution of the nearest-neighbor

internode distance is independent of the object sizes:

P�dn=�R0; . . . ;Rn�� � P�dn� � P�d�: �21�
A Gaussian probability of internode spacing would give

P�d� � 1

�D�2��1=2
exp ÿ �dÿD�2

2�2
D

� �
P�q� � exp ÿ q2�2

D

2

� �
exp�iqD�:

�22�

With these hypotheses, known as the decoupling approxima-

tion (Guinier & Fournet, 1955; Guinier, 1956), writing

P�q� � ��q� exp�iqD�, the scattered intensity reads

I�q� � R p�R�jF�q;R�j2 dR� 2
R

p�R�F�q;R� dR
�� ��2

�P�1
n�1

��q�n cos�nqD�: �23�

Using the summation (77) of Appendix A, the interference

function of a one-dimensional Hosemann paracrystal (Hose-

mann & Bagchi, 1962) appears:

S��q� �
1ÿ ��q�2

1� ��q�2 ÿ 2��q� cos�qD� : �24�

The scattered intensity can then be decomposed into the sum

of a coherent term,

I�q� � �0�q� � jhF�q;R�ij2S��q�; �25�

and an incoherent one linked to the size distribution of scat-

terers along the chain,

�0�q� � hjF�q;R�j2i ÿ jhF�q;R�ij2: �26�

The high-q limit of the interference function S��q� ! 1 is

linked to the loss of long-range order in the chain due to

cumulative paracrystalline disorder; S��q� shows broader and

broader successive maxima at Bragg positions, i.e. at integer

values of qD=2�. When �D ! 0, the perfect crystal is recov-

ered. Fig. 1 illustrates the DA for stick objects. With the

chosen parameters, the diffuse term �0�q� dominates the

scattering curve except close to the ®rst maximum of the

interference function where all the intensity is concentrated in

the coherent scattering term. Notice the signi®cant difference

between the hjF�q;R�j2i and jhF�q;R�ij2 mean values.

3.4. Size±size correlations: from the decoupling approxima-
tion to the local monodisperse approximation

3.4.1. General approach. The size±size correlation is the

®rst type of correlation considered herein. The size of an

object is assumed to depend on those of its neighbors, whereas

the internode distances obey the same law P�d� all along the

chain (i.e. there is no size±separation correlation). After

summation over the intermediate variables R1; . . . ;Rnÿ1,

equation (7) reduces to

I�q� � hjF�q;R�j2i � 2
P�1
n�1

h RR
p�R0�p�Rn=R0�F��q;R0�

� F�q;Rn� dR0 dRn

i
�n�q� cos�nqD�: �27�

In order to highlight the difference between equation (27)

and the case without correlation [equation (25)], equation (27)

can be rewritten as

I�q� � jhF�q;R�ij2S��q� ��0�q� � Ic�q�

Ic�q� � 2
P�1
n�1

�n�q��n�q� cos�nqD�: �28�

Ic�q� contains all the effects of the coupling between scatterer

sizes. Each �n�q� coef®cient describes the correlations of the

centered scattered amplitudes between two objects separated

by n nodes:
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Figure 1
Scattered intensity I�q�, form factors hjF�q�j2i; jhF�q�ij2, interference
function S��q� (right scale), and coherent jhF�q�ij2S��q� and diffuse
scattering �0�q� � hjF�q�j2i ÿ jhF�q�ij2 of a Gaussian paracrystalline
chain made of uncorrelated sticks, i.e. within the decoupling approxima-
tion [parameters of equation (19)]. The Gaussian stick size distribution is
shown in the inset. The intensities have been normalized by I0 � 4�2

0R2.



�n�q� �

�F�q;Rn� ÿ hF�q;R�i��F�q;R0� ÿ hF�q;R�i���
� RR p�R0�p�Rn=R0�F��q;R0�F�q;Rn� dR0 dRn

ÿ R
p�R�F�q;R� dR

�� ��2: �29�

3.4.2. The normally distributed Markov chain with
correlation to first neighbor. To go further, an expression of

p�R0; . . . ;Rn� is needed. A simple Markov chain, restricted to

®rst-neighbor interactions, is considered:

p�R0; . . . ;Rn� � p�R0;R1� . . . p�Rnÿ1;Rn�: �30�
The sizes Rn are assumed to be normally distributed [equation

(14)] and the joint distribution of the sizes of two neighboring

objects is assumed to be normal, i.e:

p�Rnÿ1;Rn� �
1

2��2
R�1ÿ �2�1=2

� exp ÿ�R2
nÿ1 ��R2

n ÿ 2��Rnÿ1�Rn

2�2
R�1ÿ �2�

� �
; �31�

where �Rn � Rn ÿ R, �R � �h�R2
ni�1=2 is the standard

deviation of the size from the mean value R and � is a

correlation coef®cient:

� � h�Rnÿ1�Rni
�2

R

: �32�

The conditional probability can easily be deduced from

equations (14) and (30):

p�Rn=Rnÿ1� �
p�Rnÿ1;Rn�

p�Rnÿ1�
� 1

�R�1ÿ �2�1=2�2��1=2
exp ÿ ��Rn ÿ ��Rnÿ1�2

2�2
R�1ÿ �2�

� �
:

�33�

A useful and interesting property of the normal distribution is

that the correlation between two objects, spaced by n inter-

nodes, decreases as �n. Indeed, using equation (33), it can be

demonstrated recursively that

p�Rn=R0� �
ZZ

p�R1=R0� . . . p�Rn=Rnÿ1� dR1 . . . dRnÿ1

� 1

�R�1ÿ �2n�1=2�2��1=2
exp ÿ ��Rn ÿ �n�R0�2

2�2
R�1ÿ �2n�

� �
:

�34�
j�j< 1 ensures the fact that the chain is stationary [equation

(14)], i.e.

lim
n!�1

p�Rn=R0� � p�Rn�: �35�

3.4.3. Correlation limit cases. It is shown below that,

without any assumption on the shape of the object, the two

usual approximations, DA and LMA, correspond to the limit

cases � � 0 and � � 1, respectively. A numerical representa-

tion of this chain is given in Fig. 2 for various correlation

coef®cients �. Without correlation, � � 0, �n�q� � 0 for

n � 1; . . . ;�1: the decoupling approximation [equations

(25)±(26)] is recovered. For increasingly positive � values, the

objects tend to be locally all of the same size. For � close to 1,

from a scattering point of view the situation corresponds to an

incoherent interference between domains in which all objects

have the same scattering length, i.e. are monodisperse. Indeed,

for � � 1, equation (34) shows that

lim
�!1

p�Rn=R0� � ���Rn ÿ�R0�
lim
�!1

�n�q� � �0�q�:
�36�

Thus, within this limit, the scattered intensity (27) is
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Figure 2
A representation of the normally distributed Markov chain for various ®rst-neighbor size±size correlation coef®cients �. The size disorder is �R � 0:4R
[parameters of equation (19)].



lim
�!1

I�q� � hjF�q;R�j2iS��q�; �37�

which is known as the local monodisperse approximation. This

equation is often used to analyze experimental data of scat-

tering from particles (Pedersen, 1994; Pedersen et al., 1997;

Lazzari, 2002), thus implicitly assuming that the sample is

made of monodisperse domains over the coherent length of

the beam. Such a hypothesis is clearly unphysical in many

situations (Revenant et al., 2004). At the opposite limit

� � ÿ1, the more or less monodisperse domains of the chain

are made of doubled unit cells (Fig. 2). In this limit,

lim
�!ÿ1

p�R2n=R0� � ���R2n ÿ�R0�
lim
�!ÿ1

p�R2n�1=R0� � ���R2n�1 ��R0�
�38�

and

lim
�!ÿ1

�2n�q� � �0�q�
lim
�!ÿ1

�2n�1�q� � ���q� �

�F�q;R��R0� ÿ hF�q;R�i� �39�
� �F�q;Rÿ�R0� ÿ hF�q;R�i���:

The two involved summations [equations (78)±(79)] over n of

equation (28) give the limit of the correlation scattering term

Ic�q�:
lim
�!ÿ1

Ic�q�

� 2
�0�q��2�q��cos�2qD� ÿ �2�q�� ����q���q��1ÿ �2�q��

1� �4�q� ÿ 2�2�q� cos�2qD� :

3.4.4. Specific object shapes. Let us now pursue the

calculation with speci®c object shapes, namely the Dirac peak

and the stick.

The Dirac peak case

If the objects are Dirac like, using equations (12) and (34),

the integral involved in the �n�q� coef®cient of equation

(29) is easily calculated for normally distributed variables

using the variable change (u � �R0, v � �Rn ÿ �n�R0):

�n�q� � 4�2
0�

2
R�

n. The geometric sum in equation (28) leads to

the following scattered intensity:

I�q� � 4�2
0R2S��q� � �0�q� � Ic�q�

Ic�q� � 4�2
0�

2
R�S �q� ÿ 1�

�0�q� � 4�2
0�

2
R;

�40�

where

S �q� �
1ÿ  �q�2

1�  �q�2 ÿ 2 �q� cos�qD� with  �q� � ���q�:
�41�

The term ���q� can also be evaluated:

���q� � ÿ4�2
0�

2
R: �42�

The diffuse scattering function S �q�, which is quite analogous

to the interference function of the paracrystal equation (24), is

shown in Fig. 3 for various correlation parameters. For positive

� values, a strengthening of the scattered intensity is observed

at Bragg values qD � 2n� whereas peaks of diffuse scattering

arise at anti-Bragg positions for negative values. For � � 0,

S �q� � 1 and the DA limit is recovered.

The stick case

For objects in the form of sticks, by using the form-factor

expressions (16)±(17), the double integral involved in equa-

tion (29) can be calculated analytically:
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Figure 3
The S �q� function [equation (41)] involved in the diffuse scattering term
for Dirac peak objects. The chosen statistic for the paracrystal is Gaussian
[equation (22)] with �D � 0:1D.

Figure 4
The correlation scattering term Ic�q�=I0 [equation (28)] for a Markov
chain of normally distributed sticks as a function of the correlation
coef®cient � (see text). I0 � 4�2

0R2 is used as a normalization value.
Isolines (�100) give the linear color scale. The parameters used are those
of equation (19).



�n�q� �
4�2

0

q2
exp�ÿq2�2

R�f��cosh�q2�2
R�

n� ÿ 1� sin2�qR�
� sinh�q2�2

R�
n� cos2�qR�g: �43�

The ���q� term is also available:

���q� �
2�2

0

q2
�exp�ÿ2q2�2

R� ÿ cos�2qR�
ÿ 2 sin2�qR� exp�ÿq2�2

R��: �44�

The correlation term Ic�q� [equation (28)] is illustrated in Fig.

4. For increasingly positive values of the correlation coef®cient

�, the long-range correlation leads to a strengthening of

intensity below the Bragg peaks and a decrease in between.

For negative values, the same behavior is observed with a

pseudo-doubling of the periodicity as has already been high-

lighted in Fig. 2. The latter is due to a cell content that consists

on the average of a `large' and a `small' stick. This phenom-

enon is well illustrated in Fig. 5 on the total scattered intensity

or on the scattering-length autocorrelation function z�x�,
which is calculated by back-Fourier transform of I�q�. At

� � 0, with the chosen parameters, only one scattering peak

appears in the coherent term of equation (25) and Ic�q� � 0.

With increasing �, the peak gets narrower and the diffuse

background decreases. This illustrates the arbitrary distinction

between coherent and diffuse scattering. It is worth noticing

the large intensity difference between positive and negative �
values at small q values. An increase of the scattered intensity

is observed for �> 0, whereas the low-q scattering for �< 0 is

weaker due to damping of long-range density ¯uctuations.

This can be illustrated on a simple example: the nearest

neighbor of a `large' stick is statistically a `small' one which

immediately compensates for the increase of density. This is all

the more true as � is close to ÿ1. The observed damped

oscillatory behavior in Fig. 5 and the subsequent loss of long-

range order result from a mixture of paracrystal and size

disorders. The larger the correlation coef®cient �, the slower

the convergence towards the limit value z0. As an example at

� � 0:75, the correlation term Ic�q� of equation (28) is

expanded in Fig. 6 along its different components �n�q�, which

are a ®ngerprint of the correlation to the nth neighbor. The

increase of the oscillatory behavior for high n values leads to

destructive interferences, except close to the Bragg positions

where all the terms are in phase and thus strengthens the

intensity.

3.4.5. Limit at small wavevector transfer. As limq!0 ��q� �
1ÿ q2�2

D=2, the q � 0 limit of the scattered intensity is in both

cases (Dirac and stick objects) given by the expression:

lim
q!0

I�q�
�2

0

� 4R2 �D

D

� �2

�4�2
R

1� �
1ÿ � : �45�

This indicates the generality of the low-q-range intensity

behavior. One has to keep in mind that the central Dirac peak

due to the mean scattering length was excluded on purpose.

Thus, this limit is entirely due to the ¯uctuations of the scat-

tering length in the probed volume (Guinier & Fournet, 1955;

Guinier, 1956; Ziman, 1979), either due to the ¯uctuations of

the number of paracrystal lattice nodes or to the ¯uctuations

of the object sizes. The value I�q � 0� diverges when � � 1

because the coherence length of the monodisperse domains

measured by the inverse of the I�q � 0� peak width increases.

This behavior is characteristic of long-range ¯uctuations

encountered close to a critical point. The limit � � ÿ1 yields a

minimum of diffuse scattering at q � 0 as no long-range

density ¯uctuation is expected because each local ¯uctuation

is immediately canceled by its ®rst neighbors.
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Figure 5
Total scattered intensity I�q�=I0 (thick line) [equation (28)] and scattering-length autocorrelation function z�x�=z0 (thin line) of a one-dimensional stick
chain. The stick sizes are correlated to ®rst neighbor following a joint normal law and the paracrystal statistic used is Gaussian [equation (22)]. The
numerical parameters are given in equation (19).



3.5. Correlations between sizes and the separation distance:
effects of aggregation and hard-core repulsion on scattering

3.5.1. General approach. In this section, the coupling

between sizes and separation of the scatterers is considered.

The object sizes are assumed to be uncorrelated [equation

(20)] but the separation between an object An and its previous

neighbor Anÿ1 is supposed to depend on the respective sizes of

the previous objects in the chain. The simplest dependence

that ful®lls symmetry rules is a linear one to ®rst neighbors:

R�1
ÿ1

dnP�dn=�R0; . . . ;Rn�� ddn � D� ���Rnÿ1 ��Rn�; �46�

which corresponds to

P�q=�R0; . . . ;Rn�� � ��q� exp�iqD� exp�i�q��Rnÿ1 ��Rn��:
�47�

The dependence of equation (46) conveys a kind of hard-core

effect, in particular if D> 2R and �> 1. However, within this

model, the object overlapping is possible, except if the para-

crystal law of equation (46) is explicitly de®ned only for

positive dn ÿ Rnÿ1, as with the gamma law for instance.

Averaging over the sizes of the neighboring particles in

equation (47) shows that the mean internode distance is still

equal to D and its centered variance is �2
D. A representation of

the chain obtained by following this construction rule is given

in Fig. 7 for a Gaussian paracrystal. Even if the linear density

of objects is constant whatever the coef®cient � is, a clear

aggregation phenomenon is observed for `small' or `large'

sticks. To highlight this point, a criterion of aggregation for

sticks needs to be de®ned for the gap between particles as

illustrated in the insets of Fig. 7. As hdni ÿ Rn ÿ Rn�1 is the

average gap between two particles of sizes Rn;Rn�1, the

normalized average gap egn is de®ned as

egn �
hdni ÿ Rn ÿ Rn�1

Dÿ 2R
� Dÿ 2R�

Dÿ 2R
� 2R��ÿ 1�

Dÿ 2R

Rn � Rn�1

2R

� �
:

�48�
On the average, two neighboring particles tend to aggregate

when egn < 0. A speci®c value of � has to be considered:

�0 � D=2R. In this case, the normalized gap egn �
�Rn � Rn�1�=2R scales with the size of the objects: the system
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Figure 7
A representation of the chain for various correlation parameters � between the mean internode distance and the object sizes [equation (46)]. The object
sizes are distributed according to a Gaussian law �R � 0:4R. The paracrystal statistics are also Gaussian with �D � 0:1D. The insets show a sampling of
the gap between objects egn � �hdni ÿ Rn ÿ Rn�1�=�Dÿ 2R� versus the sum of the size of two neighboring particles �Rn � Rn�1�=2R. Note that
�0 � D=2R � 1:7.

Figure 6
The different components �n�q� cos�nqD� exp�ÿnq2�2

D� of the correla-
tion term Ic�q� at � � 0:75 [equation (28)] for sticks whose sizes are
correlated to ®rst neighbors. Same parameters as in Fig. 5.



is scale invariant and, as a consequence, it is impossible to

distinguish between areas consisting of large and small sticks.

For �<�0, the larger objects are closer to each other than the

smaller ones, which `repel' each other. On the other hand, for

�>�0, the larger objects are farther apart and the smaller

ones tend to aggregate. If the �>�0 case is intuitive for X-ray

scattering where the scattering length is proportional to the

size of the electronic cloud, the situation �<�0 can be

encountered in neutron scattering where the scattering length

is not related to the size of the atoms but to the nucleus

content. Note that � � 1 leads to a constant gap egn between

the scatterers.

The total scattered intensity follows readily from equation

(7):

I�q� � hjF�q;R�j2i �P�1
n�1

In
c �q� � c:c:

In
c �q� � �n�q� exp�inqD� R. . .

R
p�R0� . . . p�Rn�F��q;R0�F�q;Rn�

� exp i�q �R0 � 2
Pnÿ1

k�1

�Rk ��Rn

� �� �
dR0 . . . dRn:

�49�

3.5.2. Specific object shapes.
The Dirac peak object

By using the form-factor expression of a Dirac object

[equation (12)] for a Gaussian size distribution [equation

(14)], the multiple integral in In
c �q� reduces to

In
c �q� � 4�2

0�
n�q� exp�inqD� exp�ÿ2�2q2�2

R�nÿ 1
2���R� i�q�2

R�2:
�50�

After the complex conjugate has been added, the summation

of equation (49) reads

I�q� � 4�2
0�R2 � �2

R� � 8�2
0 exp��2q2�2

R��R2 � �2q2�4
R�

�P�1
n�1

 �q�n cos�nqD� �0�q��; �51�

where the variables  �q� and �0�q� are de®ned by

 �q� � ��q� exp�ÿ2�2q2�2
R� �52�

tan��0�q�� �
2�qR�2

R

R2 ÿ �2q2�4
R

: �53�

By applying the geometric sums of Appendix A, the previous

sum can be handled analytically:

I�q� � 4�2
0�R2 � �2

R� � 8�2
0 exp��2q2�2

R��R2 � �2q2�4
R�

�  �q� cos�qD� �0�q�� ÿ  2�q� cos��0�q��
1�  2�q� ÿ 2 �q� cos�qD� : �54�

The stick object

This approach is similar to the Dirac-like object case, except

for the form factor which comes into play in equation (13).

The multiple integral of In
c �q� in equation (49) is calculated

in a straightforward way by expanding the product

F�q;R0�F�q;Rn� / sin�q�R��R0�� sin�q�R��Rn�� in

complex numbers:

In
c �q� �

4

q2
�2

0�
n�q� exp�inqD� expfÿ��2nÿ 1��2 � 1�q2�2

Rg
� �1ÿ cos�2qR� cosh�2�q2�2

R�
� i sin�2qR� sinh�2�q2�2

R��: �55�
By introducing again

 �q� � ��q� exp�ÿ2�2q2�2
R� �56�

tan��0�q�� �
sin�2qR� sinh�2�q2�2

R�
1ÿ cos�2qR� cosh�2�q2�2

R�
�57�

and gathering each term with its complex conjugate, the

summation of equation (54) reads
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Figure 8
(a) A map in the �q; �� space of the total scattered intensity [equation
(58)] by a chain made of sticks aggregated on a Gaussian paracrystal
according to equation (46). The intensity is normalized by I0 � 4�2

0R2 and
the numerical parameters are given in equation (19). (b) A map of the
associated scattering-length autocorrelation function, z�x�=z0.



I�q� � 2�2
0

q2
�1ÿ exp�ÿ2�2

Rq2� cos�2qR��

� 4�2
0

q2
exp�ÿ�1ÿ �2�q2�2

R��cosh�2�q2�2
R� ÿ cos�2qR��

�
X�1
n�1

 n�q� cos�nqD� �0�q��: �58�

The above sum can be carried out with the help of Appendix

A as in equation (51). It is easily checked that I�q� � 0 when

the chain is made of contiguous sticks, i.e. D � 2R, � � 1;

there remains only the scattering from the mean density, i.e. a

Dirac peak at the origin.

The calculated scattered intensity using equation (58) is

shown in Figs. 8±9 together with the corresponding scattering-

length autocorrelation function. The maximum of intensity,

located close to q � 2�=D for � � 0, shifts towards lower

wavevector transfer values for both positive and negative �
values. For 0<� � 2:5, a clear minimum of scattering at low

q (qD=2�< 0:2), and for � close to �0 � D=2R � 1:7, is

observed, while an increase of intensity is found above this

value. On the contrary, the signal increases steadily for small q

values when �< 0. Whatever the sign of �, the autocorrelation

oscillations observed at � � 0 are strongly damped (Fig. 9).

3.5.3. The partial and total interference functions. The

interference functions can help in understanding the above

described behavior. The node±node total interference func-

tion S�q� is simply obtained by replacing the object form factor

by 1.0 in equation (49). The centered characteristic function

PR�q� � 
�q� exp�iq��q�� of the size distribution allows us to

write

S�q� � 1� 2

2��q�

�2�q�

 �q� cos�u�q� � �0�q�� ÿ  2�q� cos��0�q��
1�  2�q� ÿ 2 �q� cos�u�q�� ;

�59�
where

 �q� � ��q�
�2�q� �60�
u�q� � q�D� 2���2�q�� �61�
�0�q� � 2�q����q� ÿ ��2�q��: �62�

In the case of normally distributed objects, the result is

S�q� � 1� exp��2q2�2
R�

1ÿ  2�q�
1�  2�q� ÿ 2 �q� cos�qD� ÿ 1

� �
;

�63�
where  �q� � ��q� exp�ÿ2�2q2�2

R�. S�q� and the pair correla-

tion function g�x� obtained by back Fourier transform are

displayed in Fig. 10 for various correlation parameters �. As

expected from equation (46), S�q� is even with �. The variation

of the parameter � allows a continuous transition from a

system of correlated objects with a clear peak in the S�q� and

g�x� functions to uncorrelated aggregated particles with a

nearly ¯at pair correlation function. The interference peak

broadens and shifts continuously with � towards low q values

before disappearing around � � 2:5. Within this model, the

®rst conclusion is that even the position of the ®rst peak of

S�q� is not directly proportional to the inverse of the mean

object separation D. Secondly, the maximum observed below

qD=2� � 1 for �> 2:5 in the total scattered intensity (see Figs.

8 and 9) is not, strictly speaking, a correlation peak. By using

the decomposition of I�q� along the partial interference

functions [equation (10)], it can be shown that, for �> 2:5, this

peak is linked to the scattering from the largest isolated
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Figure 9
The total scattered intensity I�q�=I0 (thick line) [equation (58)] and scattering-length autocorrelation function z�x�=z0 (thin line) of a one-dimensional
stick chain. The stick sizes are uncorrelated but the object separation depends linearly on the sizes of neighbors according to equation (46). The
paracrystal statistic used is Gaussian [equation (22)] and the numerical parameters are those of equation (19).



objects. Another unusual result is the appearance of several

maxima in the scattering curve for �< 0 (see Fig. 9, � � ÿ1:7)

that do not correspond to integer values of qD=2�. However,

as a general rule, scattering from the largest particles domi-

nates the observed pattern; depending on the sign of the �
parameter, this can explain the general trends observed in Fig.

8: (i) the shift of the qD=2� � 1 peak towards small q values

for �> 0 as the largest objects are farther apart (see Fig. 7)

and (ii) the intense small-angle scattering for �< 0 as the

largest particles tend to aggregate (see Fig. 7). These conclu-

sions highlight the dif®culty in analyzing experimental data for

aggregated systems of particles at small and intermediate

wavevector transfer, that is to say close to and below the

`correlation peak' q ' 2�=D. The partial interference func-

tions can also be exactly evaluated:

S`m�q� � 1� 2��q� cos��1�q�� ÿ  �q� cos�u�q� ÿ �1�q��
1�  2�q� ÿ 2 �q� cos�u�q�� �64�

with �1�q� � qD� ���R` ��Rm� and  �q� given by equa-

tion (62). As expected, the peak positions of the partial pair

correlation functions g`m�x�, obtained by Fourier transform

of equation (64) (Fig. 11), follow obviously the

D� ���R` ��Rm� rule. This distribution of preferential

distances explains the non-Gaussian shape of the re¯ections in

g�x� and the disappearance of the `correlation peak' above

� ' 2:5 (Fig. 10).
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Figure 10
(a) The total interference function S�q� [equation (63)] and (b) pair
correlation function g�x�, calculated within the model of size±separation-
distance correlation for various � values. The numerical parameters are
those of equation (19).

Figure 11
Examples of (a) partial interference functions, S`m�q�, and (b) partial pair
correlation functions g`m�x� evaluated in the framework of the size±
separation-distance coupling model at � � 2:5 with the parameters
of equation (19). The points used in the size distribution
`;m � Rÿ �;R;R� � are shown in the inset.



3.5.4. The small wavevector transfer range. For either the

stick case or the Dirac peak function, the q � 0 limit of the

scattered intensity is given by

lim
q!0

I�q�
�2

0

� 4R2 �
2
D

D2
� 4�2

R 1ÿ 2�
R

D

� �2

: �65�

The ¯uctuations of the scattering length in a probed volume

(Guinier & Fournet, 1955; Guinier, 1963; Ziman, 1979) are

reduced to those of the paracrystal alone when

� � �0 � D=2R. This value corresponds to the small scat-

tering-vector area of Fig. 8, where the scattered intensity is

minimum. As already mentioned, this case leads to a scale

invariant behavior; local changes in the density are expected

to be drastically reduced at any site of the chain. This

minimum of intensity due to size±distance correlation in the

low-q range can explain, from our point of view, many results

obtained by angle scattering on particle systems (Naudon et

al., 2000; Revenant et al., 2004) as well as the inadequacy of

LMA and DA when applied to data analysis. DA yields a too

intense small-angle scattering (see Fig. 1) while LMA, which

relies on an unphysical interpretation of the particle system,

mimics the observed intensity minimum through an adequate

interference function. It is tempting to characterize the

aggregation process (see Fig. 7) that is observed in the size±

distance correlation model by a Guinier gyration radius Rg as

limq!0 I�q� � I�q � 0��1ÿ q2R2
g=2�. Fig. 12 displays Rg versus

� for a stick shape; when R2
g is not de®ned, Rg is set to a

negative value. The small-q expansion shows that Rg diverges

with � and tends towards the limit value of Rlim
g �

2� 21=2�2�2
R=D2 at high � values; this limit Rlim

g does not

depend on the mean size of the particle and varies with the

particle density and the coupling parameter �. Thus for

j�j>�0, the aggregation of particles [see Fig. 7 (� � 5)] drives

the value of the observed gyration radius, which is far from

that of purely isolated objects obtained from equation (16):

Rs
g �

R4=3� 2�2
RR2 � �4

R

R2 � �2
R

� �1=2

: �66�

Thus, even though a correlation peak seems to be absent in the

scattering curve, the Guinier gyration radius analysis is not

necessarily valid.

3.6. Correlations between sizes and the fluctuations of
separation distance: cumulative size and relative position
disorder

3.6.1. Approach for a Gaussian paracrystal. The last

correlation type that is taken into account is the coupling

between the sizes of the objects and the disorder of the

internode distances. If we neglect any size±size or size±

separation distance coupling, the simplest analytical form is to

add to the distance variance a term that depends linearly on

the size of the nearest neighbors:

R�1
ÿ1

d2
nP�dn=�R0; . . . ;Rn�� ddn ÿ

R�1
ÿ1

dnP�dn=�R0; . . . ;Rn�� ddn

� �2

� �2
D � �2��Rnÿ1 ��Rn�2: �67�

From this expression, it appears that increasing the coupling

parameter � or the size distribution will degrade the long-

range order of the paracrystal. A sketch of the chain is

displayed in Fig. 13. To obtain tractable results, the paracrystal

internode spacing is restricted to the Gaussian case. If one

keeps in mind that the ®rst moments of a probability law are

given by the ®rst terms of the small-q expansion of its char-

acteristic function, this Gaussian hypothesis leads to results

identical to any type of probability law at least up to second

order in q. This hypothesis yields

P�q=�R0; . . . ;Rn��

� exp�ÿiqD� exp ÿ q2

2
��2

D � �2��Rnÿ1 ��Rn�2�
� �

: �68�
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Figure 12
The gyration radius Rg within the aggregation model. Rg is normalized by
the mean radius R and plotted versus the normalized correlation
coef®cient �=�0 � 2�R=D. Also displayed are the q � 0 scattering
intensity and the high-� limit of the gyration radius. The numerical
parameters are given in equation (19).

Figure 13
A sketch of a stick chain with Gaussian disorders (size �R � 0:4R and
separation distance �D � 0:1D) with a coupling parameter � between the
neighbor sizes and the variance of distance between objects [equation
(67)].



Equation (7) gives the total scattering intensity with this

model of disorder:

I�q� � hjF�q;R�j2i �
X�1
n�1

In
c �q� cos�nqD� �69�

In
c �q� �

Z
. . .

Z
p�R0� . . . p�Rn�F��q;R0�F�q;Rn�

�
Yn

k�1

exp ÿ q2

2
��2

D � �2��Rkÿ1 ��Rk�2�
� �

dR0 . . . dRn:

With a Gaussian size distribution [equation (14)], the multiple

integral in the previous equation is replaced by

In
c �q� �

exp�ÿn�q2�2
D=2��

��R�2��1=2�n�1

Z
. . .

Z
exp ÿ 1

2�2
R

S��R0; . . . ;�Rn�
� �

� F�q;R0�F�q;Rn� dR0 . . . dRn; �70�
where S��R0; . . . ;�Rn�� is a positive de®nite quadratic form:

S��R0; . . . ;�Rn� � �1� ����R2
0 ��R2

n� � �1� 2��Pnÿ1

k�1

�R2
k

� 2�
Pn
k�1

�Rkÿ1�Rk; �71�

with � � �2q2�2
R. In order to compute In

c �q�, one needs (i) to

diagonalize the quadratic form of equation (71) and (ii) to

express the form factors in the basis of eigenvectors Xk of

S��R0; . . . ;�Rn�. The method is described in Appendix B

and only the ®nal results are given here.

3.6.2. Specific object shapes.
The Dirac peak object

The total scattered intensity (see Appendix B.1) involves

the determinant n [equation (73)] of the matrix AS associated

with the quadratic form [equation (71)]:

I�q� � 4�2
0�R2 � �2

R� � 8�2
0

X�1
n�1

1

�n�1=2
�R2 � �2

R�n�

� exp ÿn
q2�2

D

2

� �
cos�nqD� �72�

with

�n � �ÿ1�n�n=n

n � �1� 2��nÿ1 ÿ �2nÿ2

1 � 1� 2�; 2 � �1� ���1� 3��:
�73�

The stick object

The stick-case calculation (Appendix B.2) leads to the

scattering expression

I�q� � 2�2
0

q2
�1ÿ exp�ÿ2�2

Rq2� cos�2qR�� � 8�2
0

q2

X�1
n�1

1

�n�1=2

� fsinh�q2�2
R�n� cos2�qR� � cosh�q2�2

R�n� sin2�qR�g

� exp�ÿq2�2
R�n� exp ÿn

q2�2
D

2

� �
cos�nqD� �74�

with

�1 �
1� �

1� 2�
; �2 �

1� 3�� �2

1� 3�
; �n � �1� �� 1ÿ � nÿ1

n

� �
:

�75�
The main consequence (Fig. 14) of an increasing coupling

between the sizes of the scattering entities and the variance of

their distance disorder is an increase of diffuse scattering close

to the origin and a slight shift and a broadening of the

correlation peak.

3.6.3. The total interference function. By using the basis

change [equation (82)], the node±node interference function

S�q� is obtained straightforwardly from equation (69) by

suppressing the form-factor expressions:

S�q� � 1� 2
X�1
n�1

1

�n�1=2
exp ÿn

q2�2
D

2

� �
cos�nqD�: �76�

As shown in Fig. 15, increasing the coupling parameter �
degrades the long-range order, but without any noticeable

shift of the interference function peaks contrary to the be-

havior of the `correlation peak' in Fig. 14.

4. Conclusions and model generalization

An extension of the one-dimensional paracrystal model has

been developed to mix the well known substitution and

lattice disorders in the framework of the paracrystal, thus

including correlations between the cell scattering weights

and lattice sites. Based on a probabilistic description of the

scattering-length autocorrelation function, the diffuse scat-

tering as well as the total and partial interference functions

were evaluated. Simple analytical expressions were given in

the case of ®rst-neighbor correlations between size, separa-

tion distance and variance of separation distance for simple

objects in the form of sticks and Dirac peaks. In the size±

size correlation case, the coupling parameter � allows for a

continuous transition from the decoupling approximation

(analogous to the static Debye±Waller approximation) to

the local monodisperse approximation (incoherent inter-

ference between monodisperse domains). The correlation to

the nth neighbor is found to decrease as j�jn. The case �< 0

corresponds to an alternation of neighboring particles that

are very dissimilar in size, leading in the limit case � � ÿ1

to a pseudo-doubling of the unit cell and hence a doubling

of the number of Bragg peaks. With increasing j�j, the

intensity increases below Bragg peaks with a corresponding

decrease of the diffuse scattering in between, thus illus-

trating the somewhat arbitrary distinction between coherent

and diffuse scattering. The second model introduces a link

between the object scattering length and their separation,

the most obvious being a hard-core repulsion. In this case,

peculiar features have been highlighted as (i) the ability to

®nd a peak in the total scattered curve without any structure

in the total interference function, (ii) a speci®c value of the

coupling parameter which leads to a scale invariant behavior

and reduces the total scattered intensity at q � 0 and (iii) a
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continuous shift of the ®rst peak of intensity towards low

wavevector transfer with increasing coupling parameter,

whose position is no longer simply related to the averaged

nearest-neighbor separation D. In addition, large size±

separation coupling may even yield a peak in intensity that can

no longer be interpreted as a `correlation peak' since it is

dominated by the largest particles. These ®ndings show the

dif®culty of interpreting experimental data for correlated

particles at small and intermediate wavevector transfers, close

to the ®rst peak of intensity. In the last model of correlation,

with increasing coupling, an increase of diffuse scattering and

a smoothing of the correlation peak is observed. A mixture of

coupling or other probability laws can also be foreseen, the

chosen examples herein giving only an illustration of the

general method. The practical application of such a formal

treatment to the experimental problem of X-ray small-angle

scattering from particles and its straightforward extension to

diffraction from a random stacking of layers or from terraces

on surfaces will be the topics of a forthcoming paper.
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Figure 14
(a) A map in the �q; �� space of the diffuse scattering from a
paracrystalline stick chain, whose separation-distance disorder variance
is correlated to the particle sizes. (b) Intensity cuts for various �
parameters. The intensity normalized by I0 � 4�2

0R2 is calculated from
the parameters of equation (19).

Figure 15
(a) Total interference function S�q� and (b) node±node pair correlation
function g�x� for a one-dimensional Gaussian paracrystal with size±
separation-distance disorder coupling. The coupling parameter � is
de®ned in equation (67). The numerical parameters are given in equation
(19).



APPENDIX A
Useful geometric sums

The four following sums often come into play in the discussed

models; they are calculated using the geometric series sum:

2
X�1
n�1

�n cos�nu� � 1

1ÿ � exp�iu� �
1

1ÿ � exp�ÿiu� ÿ 2

� 2�
cos�u� ÿ �

1� �2 ÿ 2� cos�u�
� 1ÿ �2

1� �2 ÿ 2� cos�u� ÿ 1 �77�

2
X�1
n�0

�2n�1 cos��2n� 1�u� � � exp�iu�
1ÿ �2 exp�i2u� �

� exp�ÿiu�
1ÿ �2 exp�ÿ2iu�

� 2� cos�u� 1ÿ �2

1� �4 ÿ 2�2 cos�2u� �78�

2
X�1
n�1

�2n cos�2nu� � 1

1ÿ �2 exp�i2u� �
1

1ÿ �2 exp�ÿ2iu� ÿ 2

� 2�2 cos�2u� ÿ �2

1� �4 ÿ 2�2 cos�2u� �79�

2
X�1
n�1

�n sin�nu� � 1

i

1

1ÿ � exp�iu� ÿ
1

1ÿ � exp�ÿiu�
� �

� 2� sin�u�
1� �2 ÿ 2� cos�u� : �80�

Obviously, j�j< 1 as it is always the Fourier transform of a

probability law.

APPENDIX B
Size±separation-distance disorder coupling: how to
compute the In

c �q�In
c �q� integrals

In the basis of �Rk, the matrix AS of size n� 1, associated

with the quadratic form S��R0; . . . ;�Rn� [equation (71)], is

the following tridiagonal matrix:

AS �

1� � � 0 . . .
� 1� 2� � 0 . . .
0 � 1� 2� � 0 . . .

..

. . .
. . .

. . .
. . .

. . .
. ..

.

. . . 0 � 1� 2� � 0

. . . 0 � 1� 2� �
. . . 0 � 1� �

0BBBBBBBB@

1CCCCCCCCA
�81�

with � � �2q2�2
R. As AS is symmetric and real, there is a

change of basis that diagonalizes it. Let us call (i) Xk this basis

and (ii) P the basis change matrix from Xk to �Rk according

to

�Rk �
Pn
i�0

PkiXi; �82�

and call DS the diagonal form of AS in the Xk basis. Thus,

AS � PDSPÿ1 with Pÿ1 � tP (tP being the transposed matrix

of P). In the Xk basis, the quadratic form takes the following

simple expression:

S�X0; . . . ;Xn� �
Pn
k�0

DkkX2
k : �83�

As P is an orthogonal basis change, its determinant is equal to

one; thus the variable change from �Rk to Xk in the integral

of equation (70) results in a Jacobian equal to one. The

remaining task, in order to compute the multiple integral of

equation (70), is to express the form factor in equations (12)±

(13) in the Xk basis by using equation (82). In the following,

the determinant n of the matrix AS will be used. It can be

evaluated recursively through an expansion along one column:

det AS � n � �1� 2��nÿ1 ÿ �2nÿ2

with 1 � 1� 2�; 2 � �1� ���1� 3��: �84�

B1. The Dirac peak object

By using the form-factor expression in equation (12) and

the variable change Xk [equations (82), (83)], equation (70)

takes the following form:

In
c �q� � 8�2

0

exp�ÿnq2��2
D=2��

��R�2��1=2�n�1

Z
. . .

Z
exp ÿ 1

2�2
R

Xn

k�0

DkkX2
k

" #

� R�
Xn

k�0

P0kXk

 !
R�

Xn

k�0

PnkXk

 !
dX0 . . . dXn:

�85�
The integration over a normally distributed variable is easily

handled:

In
c �q� � 8�2

0 exp ÿn
q2�2

D

2

� �Yn

k�1

1

�Dkk�1=2
R

2 � �2
R

Xn

k�0

P0kPnk

Dkk

" #
:

�86�
Using the properties of the determinant, notice thatYn

k�1

1

�Dkk�1=2
� 1

�n�1=2
: �87�

Also, as Pÿ1 � t P, one ®ndsXn

k�0

P0kPnk

Dkk

�
Xn

k�0

P0kDÿ1
kk Pÿ1

kn � �PDPÿ1�0n � �Aÿ1
S �0n: �88�

This term can be computed directly from the matrix expres-

sion (81) of AS :

�Aÿ1
S �0n � �ÿ1�n �

n

n

� �n: �89�

By gathering equations (86)±(89) in equation (69) together

with equation (15), the total intensity scattered [equation (72)]

by a Dirac peak particle with a size±separation-distance

disorder coupling is found.

B2. The stick object

The stick case is handled in the same way as in the previous

calculation:

research papers

580 FreÂdeÂric Leroy et al. � Correlations and one-dimensional paracrystal model Acta Cryst. (2004). A60, 565±581



In
c �q� �

8�2
0

q2

exp�ÿn�q2�2
D=2��

��R�2��1=2�n�1

Z
. . .

Z
exp ÿ 1

2�2
R

Xn

k�0

DkkX2
k

" #

� sin R�
Xn

k�0

P0kXk

 !
sin R�

Xn

k�0

PnkXk

 !
dX0 . . . dXn:

�90�

The transformation in a complex number of the sine which

appears in the form-factor expression yields

In
c �q� � ÿ

2�2
0

q2

exp�ÿn�q2�2
D=2��

��R�2��1=2�n�1

Z
. . .

Z
exp ÿ 1

2�2
R

Xn

k�0

DkkX2
k

" #

� exp iq 2R�
Xn

k�0

�P0k � Pnk�
 !" #(

ÿ exp iq
Xn

k�0

�P0k ÿ Pnk� � c:c:

" #)
dX0 . . . dXn: �91�

Using the Fourier transform of a Gaussian, the previous

equation reads

In
c �q� �

4�2
0

q2
exp ÿn

q2�2
D

2

� � Yn

k�0

1

�Dkk�1=2

(

� exp ÿ q2�2
R

2

P2
0k � P2

nk

Dkk

� �� �� Yn

k�0

exp
q2�2

RP0kPnk

Dkk

� �(

ÿ cos�2qR�
Yn

k�0

exp ÿ q2�2
RP0kPnk

Dkk

� �)
: �92�

It appears that

Yn

k�0

exp �q2�2
R

P0kPnk

Dkk

� �
� exp �q2�2

R

Xn

k�0

P0kPnk

Dkk

" #
� exp��q2�2

R�Aÿ1
S �0n�; �93�Yn

k�0

exp ÿ q2�2
R

2

P2
0k � P2

nk

Dkk

� �
� exp ÿ q2�2

R

2
��Aÿ1
S �00 � �Aÿ1

S �nn�
� �

:

�94�

The term �Aÿ1
S �0n has already been calculated in equation (89).

The two others can be computed recursively using the

expression of the associated matrix cofactors which involves

the global matrix determinant:

�Aÿ1
S �00 � �Aÿ1

S �nn �
1

n

�1� ���n ÿ �nÿ1�: �95�

Finally, by gathering in equation (69) the results found in

equations (92)±(95), the scattered intensity expressed in

equation (74) is obtained.
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